Science of NAD
How are your NAD levels today?
Nutraceutical and pharmaceutical cocktails did not preserve diaphragm muscle function or reduce muscle damage in D2-mdx mice
Experimental Physiology
April 8, 2020
Spaulding, H.R.
Summary
Duchenne muscular dystrophy is characterized by the absence of dystrophin protein and causes muscle weakness and muscle injury, culminating in respiratory failure and cardiomyopathy. Quercetin transiently improved respiratory function but failed to maintain long-term therapeutic benefits in mdx mice. In this study, we combined quercetin with nicotinamide riboside (NR), lisinopril and prednisolone to assess the efficacy of quercetin-based cocktails. We hypothesized that quercetin, NR and lisinopril independently would improve respiratory function and decrease diaphragmatic injury and when combined would have additive effects. To address this hypothesis, in vivo respiratory function, in vitro diaphragmatic function and histological injury were assessed in DBA (healthy), D2-mdx (dystrophic) and D2-mdx mice treated with combinations of quercetin, NR and lisinopril from 4 to 11 months of age. Respiratory function, assessed using whole-body plethysmography, was largely similar between healthy and dystrophin-deficient mice. Diaphragm specific tension was decreased by ∼50% in dystrophic mice compared with healthy mice (P < 0.05), but fatigue resistance was similar between groups. Contractile area was decreased by ∼10% (P < 0.05) and fibrotic area increased from 3.5% in healthy diaphragms to 27% (P < 0.05) in dystrophic diaphragms. Contrary to expectations, these functional and histological parameters of disease were not offset by any intervention. These data suggest that quercetin, NR and lisinopril, independently and in combination, did not prevent diaphragmatic injury or preserve respiratory function.